

ANTONIO VASSILLACCIII detto l'Allexse PITTORE

Probing Hadrons and Nuclei: An Experimental Overview

EINN09, Milos, Greece

September 28, 2009

'ד

Experimental tools: Scattering

- Use of lepton and hadron beams
 - **Polarized** beams of e-, e+, μ +, μ -, p
- Use of proton and nuclei targets
 - Targets in many cases are polarized (p, D, NH₃, ND₃, ³He,)
- Electromagnetic probe: Compton scattering, real and virtual
 - Exclusive, semi-inclusive or inclusive (elastic scattering, inelastic scattering)

Rutherford, 1908, Chem. N.P.

Resolution of the probe and scale of theory tools

Models

Lattice QCD

Memory Lane

1991 N.P.

• Proton is not pointlike

Robert Hofstadter N.P. 1961

Quarks as constituents of hadrons
 Today's constituent quarks

Feynman, Bjorken

Gell-Mann N.P. 1969

Partons as constituents of the nucleon

Today's current quarks and (gluons) Friedman, Kendall and Taylor

Gross, Politzer and Wilczek

Asymptotic freedom discovery
 pQCD works

The Science Problem?

Quantum Chromodynamics (QCD) and confinement

What do we know? QCD works in the perturbative (weak) regime Many experimental tests led to this conclusion

But

Confinement in QCD is still a puzzle and among the 10 top problems in Physics! (Gross, Witten,....)

Strings 2000

Lattice, AdS/CFT?!

"Millennium Madness" Physics Problems for the Next Millennium

In 1900 the world-renowned mathematician David Hilbert presented twenty-three problems at the

7. What are the fundamental degrees of freedom of M-theory (the theory whose low-energy limit is eleven-dimensional supergravity and which subsumes the five consistent superstring theories) and does the theory describe Nature?

Louise Dolan, University of North Carolina, Chapel Hill Annamaria Sinkovics, Spinoza Institute Billy & Linda Rose, San Antonio College

- 8. What is the resolution of the black hole information paradox? *Tibra Ali, Department of Applied Mathematics and Theoretical Physics, Cambridge Samir Mathur, Ohio State University*
- 9. What physics explains the enormous disparity between the gravitational scale and the typical mass scale of the elementary particles? *Matt Strassler, Institute for Advanced Study, Princeton*

10. Can we quantitatively understand quark and gluon confinement in Quantum Chromodynamics and the existence of a mass gap?
 Igor Klebanov, Princeton University Oyvind Tafjord, McGill University

These ten questions were presented by David Gross at the closing of the conference on Saturday July 15, 2000.

Theoretical Framework in QCD

Generalized Parton Distributions

Matrix elements of non-local operators with quarks and gluon field

$$rakel{p|\mathcal{O}|p}$$

Depend on two longitud. momentum fractions

$$x, \xi \text{ and } t = (p - p')^2$$

- **For unpolarized quarks we have two distributions:**
 - H^q conserves proton helicity
 - *E^q* flips proton helicity

$$p = p' \Longrightarrow \qquad H^q(x, 0, 0) = \begin{cases} q(x) & \text{for } x > 0\\ -\bar{q}(x) & \text{for } x < 0 \end{cases}$$

Continued

Integrating

 $\int dx \, x^n \, \mathrm{GPD}(x,\xi,t) \to \operatorname{local}$ operators \to form factors

$$\sum_{q} e_q \int_{-1}^{1} dx H^q(x,\xi,t) = F_1(t) \quad \text{Dirac}$$
$$\sum_{q} e_q \int_{-1}^{1} dx E^q(x,\xi,t) = F_2(t) \quad \text{Pauli}$$

Generalized Parton Distributions

 δz_{\perp}

 $f(\mathbf{x}, b_{\perp})$

хp

х

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Impact parameter picture: M. Burkhardt

Hadron Electromagnetic Form Factors

- Elastic form factors (with flavor decomposition)
 - Measured to high momentum transfer using polarization techniques, either the beam, the target or the recoil particle is polarized.
 - Light cone frame interesting for a description consistent with DIS and GPDs.
 - Measurements have been extended to a larger momentum transfer for the proton and the neutron
 - New precision measurements at low Q²

See talks by Liyanage, Kivel, Haegler

Progress on the Nucleon EM Form Factors

E08-007: High Precision Low Q² G_E^P

E04-108 G_E^P-III

Flavor separated form factors

Experimental Flavor separation of E&M Form Factors

• Assuming charge symmetry:

$$G_{E,M}^{u,p} = \left(3 - 4\sin^2\theta_W\right)G_{E,M}^{\gamma,p} - G_{E,M}^{Z,p}$$
$$G_{E,M}^{d,p} = \left(2 - 4\sin^2\theta_W\right)G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}$$
$$G_{E,M}^{s,p} = \left(1 - 4\sin^2\theta_W\right)G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}$$

Need three independent observables to extract individual

quark contributions to form factors

Strange Form Factors Results

Nuclei Form Factors Preliminary Hall A E04-018 Results

- Preliminary results rule out the long-standing dimensional scaling quark prediction.
- Both ³He and ⁴He data are in qualitative agreement with the conventional nucleon-meson theoretical framework predictions

Total Angular Momentum of the Nucleon (1)

Ji-decomposition L_q $\frac{1}{2}\Delta\Sigma$ J_g Ji (1997) $\frac{1}{2} = \sum_{a} J_q + J_g = \sum_{a} \left(\frac{1}{2}\Delta q + \boldsymbol{L}_q\right) + J_g$ with $(P^{\mu} = (M, 0, 0, 1), S^{\mu} = (0, 0, 0, 1))$ $rac{1}{2}\Delta q = rac{1}{2}\int d^3x \langle P,S|\,q^\dagger(ec x)\Sigma^3 q(ec x)\,|P,S
angle \qquad \Sigma^3=i\gamma^1\gamma^2$ $L_q = \int d^3x \langle P, S | q^{\dagger}(ec{x}) \left(ec{x} imes i ec{D}
ight)^3 q(ec{x}) | P, S
angle$ $J_g = \int d^3x \langle P, S | \left[\vec{x} \times \left(\vec{E} \times \vec{B} \right) \right]^3 | P, S \rangle$ $I \vec{D} = i \vec{\partial} - a \vec{A}$

M. Burkardt

What is Orbital Angular Momentum? - p.7/23

In light-cone framework & light-cone gauge

$$A^{+} = 0 \text{ one finds for } J^{z} = \int dx^{-}d^{2}\mathbf{r}_{\perp}M^{+xy}$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \sum_{q} \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$
where $(\gamma^{+} = \gamma^{0} + \gamma^{z})$

$$\mathcal{L}_{q} = \int d^{3}r \langle P, S | \bar{q}(\vec{r})\gamma^{+} (\vec{r} \times i\vec{\partial})^{z} q(\vec{r}) | P, S \rangle$$

$$\Delta G = \varepsilon^{+-ij} \int d^{3}r \langle P, S | \operatorname{Tr} F^{+i} A^{j} | P, S \rangle$$

$$\mathcal{L}_{g} = 2 \int d^{3}r \langle P, S | \operatorname{Tr} F^{+j} \left(\vec{x} \times i \vec{\partial} \right)^{z} A^{j} | P, S \rangle$$

M. Burkardt

Inclusive Longitudinal Spin Asymmetries

D. De Florian et al. arXiv:0804.0422

: input to the DIS & SIDIS – analysis by DNS

See talk by de Florian

Semi-Inclusive longitudinal spin asymmetries

D. De Florian et al. arXiv:0804.0422

not in DNS

NLO FIT to World Data D. De Florian et al. arXiv:0804.0422 NLO @ Q²=10 GeV² χ^2 DIS χ^2 SIDIS $\Delta \bar{d}$ Δu_v Δd_v Δū Δs Δg $\Delta\Sigma$ Kretzer -0.049-0.051206 0.94 -0.34225 -0.0550.28 -0.045KKP -0.11 206 231 0.70 -0.260.087 0.31 -0.1150.813 -0.458 0.036 -0.0570.242 DSSV

For more details see talks by: De Florian, Boyle and Kabuss

includes all world data from DIS, SIDIS and pp

Neutron to Proton ratio at large x

Spectator tagging

• Nearly free neutron target by tagging low-momentum proton from deuteron at backward angles

- Small p (70-100 MeV/c)
 - Minimize on-shell extrapolation (neutron only 7 MeV off-shell)
- Backward angles (q_{pq}> 110°)
 - Minimize final state interactions

@ x = 1 $F_2^n/F_2^p \rightarrow 0.25$ (d/u $\rightarrow 0$) for scalar diquarks $F_2^n/F_2^p \rightarrow 3/7$ (d/u $\rightarrow 1/5$) for hard gluon exchange

Semi-Inclusive Deep-Inelastic Scattering

Transverse momentum Distributions

• Transverse Momentum Distributions

- Semi-Inclusive DIS, polarized pp, Drell-Yan
- While there has been a strong activity recently with new discoveries this avenue started in the 70's when people were looking for "clean test of QCD".
 - Transversity (integrated with respect to k_T) \rightarrow Tensor charge
 - Collins fragmentation function
 - Sivers distribution function (final state interaction)
 - Boer-Mulder distribution function (initial state correlation)

An important test "Universality"

Sivers(SIDIS) = -Sivers(Drell - Yan)

See M. Burkardt talk for possible connections between GPDs and TMDs

All Eight Quark Distributions are Probed in Semi-Inclusive DIS

 S_L and S_T : Target Polarizations; I_e: Beam Polarization

Sivers amplitudes

[arXiv:0906.3918]

 $f_{1T}^{\perp q}(x,k_T) \otimes D_1^q(z)$

first observation of T-odd Sivers effect in SIDIS (PRL 94, 2005)

u quark dominance suggests sizable u quark orbital motion

cancellation for π^- :

u and d quark Sivers DF of opposite sign

See talk by

Sivers amplitudes for p

Sivers function extracted through a combined analysis

Azimuthal dependence of the unpolarized cross section

 $h_1^{\perp}(x,k_{\tau})$

spin-orbit effect (Boer-Mulders Distribution Function):

correlation between quark transverse motion and transverse spin

Boer-Mulders Distribution Function

E03-104: Polarization transfer and induced polarization in ⁴He(ề,e'p̃)³H

- Calculations of both the Madrid group (medium modification of the proton) and Schiavilla et al. (spin-dependent charge exchange in FSI) are shown
- The inner error bars are statistical only. Total error bars include systematic uncertainties
- False asymmetries are controlled at an unprecedented level of < 0.005, allowing for the 1st time a comparison of induced polarization versus p_m.
- The induced polarization data are corrected for acceptance to facilitate the comparison to Schiavilla et al. The latter calculation overestimates the data.
- Both explanations of the data seem to do equally well (or poorly).

• The second part of e1-dvcs took data from 10/12/2008 until 01/23/2009 and accumulated about 90% of the projected charge.

- All 3 particles in the final state [e, p, g (π^0)] were detected.
- The graphs show kinematical coverage, exclusivity of reaction, and missing mass resolution

Generalized Parton Distributions (GPDs)

Unprecedented set of Deeply Virtual Compton Scattering data accumulated in Halls A and B and more to come

See talk by F.X. Girod

CLAS Deeply Virtual ρ^{0} , ρ^+ production and GPDs

E-99-105 Exploration of GPD application in meson sector. *p*⁰: Eur.Phys.J.A39:5-31 ,2009 Q² (GeV²) 4 L/T separated differential cross section dσ₁/dt(μb/GeV²) (ρ⁺) [CLAS@5.776 GeV] **p**⁺: In preparation dσ₁/dt(μb/GeV²)(ρ⁺) [VGG:H] $d\sigma_1/dt(\mu b/GeV^2)(\rho^+)[VGG:H+E_]$ ++++++ $d\sigma_L/dt(\mu b/GeV^2)(\rho^+)$ [VGG:H+E_{valuesea}] **GPDs model agrees** 3.5 fairly with the data at low x_{R} (high W) Hint of GPD E dominance at 2.5 ┨╹╋╹╋┙╋┙ low x_{B} (high W) Differences of GPD prediction 1.5 –t (GeV^ℓ) and measurements shrink with increasing Q^2 at fixed $x_{\rm B}$. **d**.1 0.2 0.3 0.4 0.5 0.6

XB

HERMES DVCS Beam Charge Asymmetry in DVCS and Spin Density Matrices in rho production

Sep. 28, 2009

See talk by Mussgiler

EINN09 Conference, Milos, Greece

PrimEx Decay Width for $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ HALL B

PrimEx-I Final Result

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \text{eV} \pm 2.2\% \text{stat.} \pm 2.1\% \text{syst.}$ (± 3.0% total)

Conclusion

- A large number of new results as this conference will prove it.
- Serious progress in many fronts but still a lot to do.
- More to come for the next meeting.
- Stay inspired and share the excitement!